Investigation of Fluid Flow Through the Ureteral Canal with A Porous Media Approach in the Ureteral Stone Reduction Process

Author:

DANIŞMAZ Merdin1ORCID

Affiliation:

1. KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ

Abstract

This study includes the examination of the stone removal process by computational fluid dynamics analysis in the kidney and ureteral canal, which is modeled as the fluid evacuation channel for the urine flow. SolidWorks 2020 R2 commercial software was used for three-dimensional modeling and Flow Simulation plugin for flow simulation analysis. The kidney with the size of 12x6x6cm and in addition to this, the ureteral canal with the largest internal diameter of 20 mm (at the kidney outlet) and the smallest diameter of 5 mm (at the canal outlet) were modeled. Pressure distribution in the presence of flow was determined in case of stone stuck in the middle part of the ureteral canal. To identify the partially occluded region allowing flow, the kidney stone region was defined as a porous medium for analysis. Four different conditions (between 0.90 and 0.99) for permeability in this region were included in the analysis to represent stone size and structure. The change in pressure-velocity distribution and its effect in the kidney area were seen at 5 different entry speeds. The effect of different permeability conditions on the pressure difference was shown graphically. The findings showed the presence of high pressure (peak 1850 mmH2O) throughout the flow volume at narrow passages and low permeability conditions, as expected. At 90% permeability, the maximum local velocity in the blockage zone was found to be 4.5 m/s and this value tends to decrease with increasing permeability. It was predicted that the pressure-velocity relationship along the flow can provide information on treatment and intervention, depending on the stone and canal structure whose properties are predetermined. It was concluded that a preliminary idea could be formed about the extent of pain due to high pressure, especially for the stone dropping process, which does not cause complete obstruction in the canal and is defined as a porous medium in this analysis.

Publisher

Karadeniz Fen Bilimleri Dergisi

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3