Abstract
Abstract
Purpose
This paper aims to show the potentialities of computational bioengineering in the field of lower urinary tract pathophysiology. Engineering methods allow the investigation of urine flow in healthy and pathologic conditions and the analysis of urethral occlusion by means of artificial urinary sphincters.
Methods
Computational models of bladder and urethra were developed and exploited to investigate the lower urinary tract physiology in health and in disease. Average male morphometric configurations were assumed, together with typical properties of both biological tissues and fluids. The reliability of the models was assessed by the mutual comparison of results and the investigation of data from experimental and clinical activities.
Results
The developed models allowed to analyze typical situations, such as the micturition in health and in disease, and the lumen occlusion by external devices. The models provided information that clinical and experimental tests barely provide, as the occurrence of turbulent phenomena within urine flow, the shear stresses at the lumen wall, the external pressure that is strictly required to occlude the lumen.
Conclusions
The methods of bioengineering allow broadening and deepening the knowledge of the lower urinary tract functionality. More in detail, modeling techniques provide information that contributes to explain the occurrence of pathological situations, and allows to design and to optimize clinical-surgical procedures and devices.
Funder
Università degli Studi di Padova
Publisher
Springer Science and Business Media LLC
Subject
Biomedical Engineering,General Medicine
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献