Prediction of hydraulic and petrophysical parameters from indirect measurements of electrical resistivity to determine soil-water retention curve – studies in granular soils

Author:

Góis ManuelleORCID,Costa KatherinORCID,Cavalcante AndréORCID

Abstract

The characterization of unsaturated soils using hydromechanical methods is an essential requirement in soil science. However, current laboratory techniques used to obtain soil water retention and unsaturated hydraulic conductivity curves are time-consuming. To address this issue, a method based on indirect measures (electrical resistivity/electrical conductivity) was developed to quantitatively characterize soils. A novel unsaturated semi-empirical hydrogeophysical model of soils was developed by incorporating the hydrodynamic, geophysical, and petrophysical characteristics of soils. The model assumes that the parameters influencing the variation in the volumetric water content with matric suction and electrical resistivity are the same. The electrical resistivity characteristic curve (ERCC) defines a function that correlates environmental variables, electrical resistivity, soil water status, matric suction, hydraulic and petrophysical parameters, and fluid electrical resistivity. Model validation confirmed that the proposed approach can estimate the soil water retention curve (SWRC) via the indirect measures, and the results agreed with the experimental data. This indicates that it is possible to determine the SWRC and unsaturated hydraulic conductivity function of soil using the described approach.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Void ratio determination in soil using time domain reflectometry;Journal of Innovative Engineering and Natural Science;2024-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3