Affiliation:
1. KIRKLARELİ ÜNİVERSİTESİ
2. KOCAELI UNIVERSITY
Abstract
In geotechnical engineering, the void ratio stands out as a critical parameter that is closely related to several essential soil properties, including permeability, compressibility, settlement and bearing capacity. Accurate and rapid determination of this key parameter is therefore essential. Traditional methods involve assessing the properties of soil samples taken from the field using simple laboratory techniques. However, determining the void ratio requires the determination of parameters such as soil water content and specific gravity. Whilst these parameters can be determined using straightforward methods, their determination in civil engineering typically takes place over an extended period. Consequently, there is a tendency to explore alternative methods for delineating specific physical properties of soils. While some methods provide direct results, such as nuclear methods, others provide results indirectly through correlations using techniques such as drilling. Due to technological advances and the increased importance of time as a critical economic parameter, there is an increasing demand for fast and reliable methods. Accordingly, Time Domain Reflectometry (TDR), which is widely used in electrical engineering, has begun to find application in civil engineering. In this study, research is carried out to determine the void ratio, a key parameter in soil mechanics, using the TDR method. Experiments were therefore carried out on samples prepared in the laboratory with different void ratios, and the void ratios of the soils were then determined using the TDR method. The results of this study suggest that the TDR method could serve as an alternative approach for determining the void ratio of soils.
Publisher
Journal of Innovative Engineering and Natural Science