Use of machine learning techniques for predicting the bearing capacity of piles

Author:

Yago GomesORCID,Verri FilipeORCID,Ribeiro DimasORCID

Abstract

Geotechnical engineers frequently rely on semi-empirical methods like Décourt-Quaresma and Meyehof’s to estimate the bearing capacity of piles. This paper proposes alternatives to these methods, presenting an approach using machine learning models for predicting the bearing capacity of precast concrete piles. It uses data samples including 165 load tests, each one accompanied with a SPT sounding. This study proposes two types of analysis using two separated datasets, one based on the Décourt-Quaresma method and the other based on the Meyerhof method. Six machine learning algorithms of distinct biases are trained and tested with a leave-one-out cross validation procedure and the models’ predictive performance is assessed through two metrics: root mean squared error (RMSE) and coefficient of determination (R2). The best performing technique was random forest (RF) using Décourt-Quaresma dataset, with an RMSE of 642.38. All other machine learning techniques obtained a RMSE below 710, overcoming Meyerhof’s and Décourt-Quaresma’s semi-empirical methods, which both obtained RMSE values close to 900. This study proposes 95% and 90% confidence intervals for the best technique employing a graphical interpretation, so that geotechnical engineers can choose which level of safety they wish to work with. Finally, the study presents a case study showing that the best performing models achieve a reasonable accuracy, surpassing the semi-empirical methods in two of the three piles considered. The representativity of the new examples within the used datasets explain the accuracy of the techniques.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3