Systematic literature review and mapping of the prediction of pile capacities

Author:

Carvalho SofiaORCID,Sales MauricioORCID,Cavalcante AndréORCID

Abstract

Predicting the pile’s load capacity is one of the first steps of foundation engineering design. In geotechnical engineering, there are different ways of predicting soil resistance, which is one of the main parameters. The pile load test is the most accurate method to predict bearing capacity in foundations, as it is the most accurate due to the nature of the experiment. On the other hand, it is an expensive test, and time-consuming. Over the years, semi-empirical methods have played an important role in this matter. Initially, many proposed methods were based on linear regressions. Those are still mainly used, but recently the use of a new method has gained popularity in Geotechnics: Artificial Neural Network. Over the past few decades, Machine Learning has proven to be a very promising technique in the field, due to the complexity and variability of material and properties of soils. Considering that, this work has reviewed and mapped the literature of the main papers published in journals over the last decades. The aim of this paper was to determine the main methods used and lacks that can be fulfilled in future research. Among the results, the bibliometric and protocol aiming questions such as types of piles, tests, statistic methods, and characteristics inherent to the data, indicated a lack of works in helical piles and instrumented pile load tests results, dividing point and shaft resistance.

Publisher

ABMS - Brazilian Association for Soil Mechanics and Geotechnical Engineering

Subject

Geotechnical Engineering and Engineering Geology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Evolutionary Polynomial Computing of Pile Capacity Using the Results of High-strain Dynamic Test;Transportation Infrastructure Geotechnology;2024-05-11

2. Prediction of pile settlement using hybrid support vector regressor;Multiscale and Multidisciplinary Modeling, Experiments and Design;2023-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3