Assessment of Climate Change Impacts on the Water, Food, and Energy Sectors in Sittaung River Basin, Myanmar

Author:

Ghimire UttamORCID,Piman ThanaponORCID,Shrestha ManishORCID,Aryal Anil,Krittasudthacheewa Chayanis

Abstract

The Sittaung river basin (SRB) remains one of the least studied basins of Myanmar in terms of the assessment of the impact of climate change. As several reservoirs already exist in the basin, much research is needed to understand how projected climate change impacts rainfall, temperature, flows, domestic and agricultural demands, and hydropower generation. Given the limitation in observed data on the ground, a combination of satellite-derived meteorological data and digital elevation data is used to generate inputs to a Water Evaluation and Planning (WEAP) model. Five CMIP5 GCMs are used in the WEAP to assess the impact of climate change on the water, food, and energy production of the SRB for the baseline (BL: 1985–2014), near future (NF: 2021–2050), and far future (FF: 2051–2080) periods. The results indicate that the average temperature and rainfall are likely to increase in the future for the SRB. December and January are expected to be drier and warmer, whereas rainy months are expected to be wetter and warmer in the future. The BL flows (1091 m3/s) are expected to increase by 7–10% during NF and by 16–19% during FF at the basin outlet. Meanwhile, the unmet domestic demand during BL (1.3 MCM) is expected to decrease further by approximately 50% in the future. However, the unmet agricultural demand (667 MCM) for food production is estimated to increase from the BL by 11–15% during NF and by 14–19% during FF. Similarly, the total energy generation of nine hydropower projects (4.12 million MWh) is expected to increase by 9–11% during NF and by 16–17% during FF. Thus, the riverine flows are expected to increase in the future, thus positively impacting the domestic and hydropower sectors, whereas the unmet demands in the agricultural sector likely remain unsatisfied. These results will help the water, agriculture, and energy sectors to develop strategies to maximize benefits and cope with the impacts of climate change in the near and long-term future.

Funder

Stockholm Environment Institute

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference108 articles.

1. Kreft, S., Eckstein, D., and Melchior, I. (2013). Global Climate Risk Index 2014: Who Suffers Most from Extreme Weather Events, Germanwatch e.V.

2. USAID (2017). Climate Change Risk Profile BURMA, USAID.

3. Horton, R., De Mel, M., Peters, D., Lesk, C., Bartlett, R., Helsingen, H., Bader, D., Capizzi, P., Martin, S., and Rosenzweig, C. (2017). Assessing Climate Risk in Myanmar: Technical Report, Center for Climate Systems Research at Columbia University, WWF-US and WWF-Myanmar.

4. Zain, M.K., Otsuyama, M.S., and Shaw, R. (2022). Climate Change Adaptation in Southeast Asia, Springer.

5. The impacts of climate change on river flood risk at the global scale;Arnell;Clim. Change,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3