Flow Velocity Measurement Using a Spatial Averaging Method with Two-Dimensional Flexural Ultrasonic Array Technology

Author:

Kang LeiORCID,Feeney AndrewORCID,Su Riliang,Lines David,Ramadas Sivaram Nishal,Rowlands George,Dixon Steve

Abstract

Accurate average flow velocity determination is essential for flow measurement in many industries, including automotive, chemical, and oil and gas. The ultrasonic transit-time method is common for average flow velocity measurement, but current limitations restrict measurement accuracy, including fluid dynamic effects from unavoidable phenomena such as turbulence, swirls or vortices, and systematic flow meter errors in calibration or configuration. A new spatial averaging method is proposed, based on flexural ultrasonic array transducer technology, to improve measurement accuracy and reduce the uncertainty of the measurement results. A novel two-dimensional flexural ultrasonic array transducer is developed to validate this measurement method, comprising eight individual elements, each forming distinct paths to a single ultrasonic transducer. These paths are distributed in two chordal planes, symmetric and adjacent to a diametral plane. It is demonstrated that the root-mean-square deviation of the average flow velocity, computed using the spatial averaging method with the array transducer is 2.94%, which is lower compared to that of the individual paths ranging from 3.65% to 8.87% with an average of 6.90%. This is advantageous for improving the accuracy and reducing the uncertainty of classical single-path ultrasonic flow meters, and also for conventional multi-path ultrasonic flow meters through the measurement via each flow plane with reduced uncertainty. This research will drive new developments in ultrasonic flow measurement in a wide range of industrial applications.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. Ultrasonic Measurements for Process Control: Theory, Techniques, Applications;Lynnworth,1989

2. Flow Measurement Handbook: Industrial Designs, Operating Principles, Performance, and Applications;Baker,2016

3. Physical Acoustics: Principles and Methods;Warren,1979

4. Ultrasonic flowmeters: Half-century progress report, 1955–2005

5. An FPGA Implementation of a Digital Coriolis Mass Flow Metering Drive System

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3