Typhoon Warm-Core Structures Derived from FY-3D MWTS-2 Observations

Author:

Niu Zeyi,Zou Xiaolei,Huang Wei

Abstract

In this study, the three-dimensional (3D) warm-core structures of the Northwest Pacific typhoons Francisco, Lekima, and Krosa in August 2019 are retrieved from the Fengyun-3D (FY-3D) microwave temperature sounder-2 (MWTS-2) observations of brightness temperature. Due to the lack of two window channels at 23.8 GHz and 31.4 GHz, an empirical cloud detection algorithm based on 50.3 GHz bias-corrected observations-minus-backgrounds is applied to obtain clear-sky observations for the multiple linear regression retrieval algorithm. The MWTS-2 cloud-affected channels 3–5 are not used to retrieve temperatures under cloudy conditions to eliminate low-tropospheric cold anomalies. The multiple linear regression coefficients are obtained based on MWTS-2 brightness temperatures and the temperatures from the European Centre for Medium-Range Weather Forecasts Reanalysis-5 (ERA5) in the training period of three weeks before the month of targeted typhoons. The proposed MWTS-2 warm-core retrieval can well capture the radial and vertical temporal evolutions of the temperature anomalies of the typhoons Francisco, Lekima, and Krosa. The sizes of the warm-core anomalies of typhoons Lekima and Krosa retrieved by the MWTS-2 are horizontally and vertically similar to and stronger than those of the ERA5. Compared with the ERA5 reanalysis in August 2019, the biases for MWTS-2 temperature retrievals are smaller than ±0.25 K, with root-mean-square errors (RMSEs) smaller than and 2.0 K at all altitudes. Additionally, the location of the 250-hPa maximum temperature anomaly retrieved by the MWTS-2 is closer to the best track than that of the ERA5. A weak warm-core around 200 hPa and a cold-core anomaly in the middle troposphere are also found in the outer rain bands region due to the effect of evaporation of rainfall.

Funder

the National Key R&D Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3