Building Extraction from Airborne LiDAR Data Based on Multi-Constraints Graph Segmentation

Author:

Hui ZhenyangORCID,Li Zhuoxuan,Cheng Penggen,Ziggah Yao YevenyoORCID,Fan JunLin

Abstract

Building extraction from airborne Light Detection and Ranging (LiDAR) point clouds is a significant step in the process of digital urban construction. Although the existing building extraction methods perform well in simple urban environments, when encountering complicated city environments with irregular building shapes or varying building sizes, these methods cannot achieve satisfactory building extraction results. To address these challenges, a building extraction method from airborne LiDAR data based on multi-constraints graph segmentation was proposed in this paper. The proposed method mainly converted point-based building extraction into object-based building extraction through multi-constraints graph segmentation. The initial extracted building points were derived according to the spatial geometric features of different object primitives. Finally, a multi-scale progressive growth optimization method was proposed to recover some omitted building points and improve the completeness of building extraction. The proposed method was tested and validated using three datasets provided by the International Society for Photogrammetry and Remote Sensing (ISPRS). Experimental results show that the proposed method can achieve the best building extraction results. It was also found that no matter the average quality or the average F1 score, the proposed method outperformed ten other investigated building extraction methods.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Education Department of Jiangxi Province

Key Laboratory for Digital Land and Resources of Jiangxi Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3