Building extraction from oblique photogrammetry point clouds based on PointNet++ with attention mechanism

Author:

Hu Hong1,Tan Qing1,Kang Ruihong12,Wu Yanlan345ORCID,Liu Hui12,Wang Baoguo6

Affiliation:

1. School of Resources and Environmental Engineering Anhui University Hefei China

2. Anhui Province Engineering Laboratory for Mine Ecological Remediation Hefei China

3. School of Artificial Intelligence Engineering Center for Geographic Information of Anhui Province Hefei China

4. Information Materials and Intelligent Sensing Laboratory of Anhui Province Hefei China

5. Anhui Engineering Research Center for Geographical Information Intelligent Technology Hefei China

6. Bengbu Geotechnical Engineering and Surveying Institute Bengbu China

Abstract

AbstractUnmanned aircraft vehicles (UAVs) capture oblique point clouds in outdoor scenes that contain considerable building information. Building features extracted from images are affected by the viewing point, illumination, occlusion, noise and image conditions, which make building features difficult to extract. Currently, ground elevation changes can provide powerful aids for the extraction, and point cloud data can precisely reflect this information. Thus, oblique photogrammetry point clouds have significant research implications. Traditional building extraction methods involve the filtering and sorting of raw data to separate buildings, which cause the point clouds to lose spatial information and reduce the building extraction accuracy. Therefore, we develop an intelligent building extraction method based on deep learning that incorporates an attention mechanism module into the Samling and PointNet operations within the set abstraction layer of the PointNet++ network. To assess the efficacy of our approach, we train and extract buildings from a dataset created using UAV oblique point clouds from five regions in the city of Bengbu, China. Impressive performance metrics are achieved, including 95.7% intersection over union, 96.5% accuracy, 96.5% precision, 98.7% recall and 97.8% F1 score. And with the addition of attention mechanism, the overall training accuracy of the model is improved by about 3%. This method showcases potential for advancing the accuracy and efficiency of digital urbanization construction projects.

Publisher

Wiley

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3