Impact of Nd3+ Substitutions on the Structure and Magnetic Properties of Nanostructured SrFe12O19 Hexaferrite

Author:

Semaida Ashraf M.ORCID,Darwish Moustafa A.ORCID,Salem Mohamed M.,Zhou DiORCID,Zubar Tatiana I.ORCID,Trukhanov Sergei V.ORCID,Trukhanov Alex V.ORCID,Menushenkov Vladimir P.ORCID,Savchenko Alexander G.

Abstract

In this study, SrFe12-xNdxO19, where x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, was prepared using high-energy ball milling. The prepared samples were characterized by X-ray diffraction (XRD). Using the XRD results, a comparative analysis of crystallite sizes of the prepared powders was carried out by different methods (models) such as the Scherrer, Williamson–Hall (W–H), Halder–Wagner (H–W), and size-strain plot (SSP) method. All the studied methods prove that the average nanocrystallite size of the prepared samples increases by increasing the Nd concentration. The H–W and SSP methods are more accurate than the Scherer or W–H methods, suggesting that these methods are more suitable for analyzing the XRD spectra obtained in this study. The specific saturation magnetization (σs), the effective anisotropy constant (Keff), the field of magnetocrystalline anisotropy (Ha), and the field of shape anisotropy (Hd) for SrFe12-xNdxO19 (0 ≤ x ≤ 0.5) powders were calculated. The coercivity (Hc) increases (about 9% at x = 0.4) with an increasing degree of substitution of Fe3+ by Nd3+, which is one of the main parameters for manufacturing permanent magnets.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3