Author:
Wang Haoran,Zhang Fan,Duan Ji’an
Abstract
Infrared antireflection of a zinc sulfide (ZnS) surface is important to improve performance of infrared detector systems. In this paper, double-pulse femtosecond laser micro-machining is proposed to fabricate a subwavelength quasi-periodic array (SQA) on ZnS substrate for infrared antireflection. The SQA consisting of approximately 30 million holes within a 2 × 2 cm2 area is uniformly formed in a short time. The double-pulse beam can effectively suppress the surface plasma shielding effect, resulting in obtaining a larger array depth. Further, the SQA depth is tunable by changing pulse energy and pulse delay, and can be used to readily regulate the infrared transmittance spectra as well as hydrophobicity. Additionally, the optical field intensity distributions of the SQA simulated by the rigorous coupled-wave analysis method indicate the modulation effect by the array depth. Finally, the infrared imaging quality captured through an infrared window embedded SQA is evaluated by a self-built infrared detection system.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
General Materials Science,General Chemical Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献