Abstract
In this study, the relevance of Lorentz and Coriolis forces on the kinetics of gyratory Maxwell nanofluids flowing against a continually stretched surface is discussed. Gyrotactic microbes are incorporated to prevent the bioconvection of small particles and to improve consistency. The nanoparticles are considered due to their valuable properties and ability to enhance thermal dissipation, which is important in heating systems, advanced technology, microelectronics, and other areas. The main objective of the analysis is to enhance the rate of heat transfer. An adequate similarity transformation is used to convert the primary partial differential equations into non-linear dimensionless ordinary differential equations. The resulting system of equations is solved using the finite element method (FEM). The increasing effects of the Lorentz and Coriolis forces induce the velocities to moderate, whereas the concentration and temperature profiles exhibit the contrary tendency. It is observed that the size and thickness of the fluid layers in the axial position increase as the time factor increases, while the viscidity of the momentum fluid layers in the transverse path decreases as the time factor decreases. The intensity, temperature, and velocity variances for the suction scenario are more prominent than those for the injection scenario, but there is an opposite pattern for the physical quantities. The research findings are of value in areas such as elastomers, mineral productivity, paper-making, biosensors, and biofuels.
Subject
General Materials Science,General Chemical Engineering
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献