Modeling convective transport in a reactive fluid near a vertical pervious plate influenced by intense magnetic forces, induced magnetic field, Hall current and thermo-diffusion

Author:

Das Sanatan1ORCID,Tarafdar Bikarna1,Jana Rabindra Nath2

Affiliation:

1. Department of Mathematics, University of Gour Banga, Malda 732 103, India

2. Department of Applied Mathematics, Vidyasagar University, Midnapore 721 102, India

Abstract

Exploring convective transport in conducting fluids under potent magnetic influences yields essential insights into numerous natural and designed systems. Such insights aid researchers and engineers in making enlightened progressions in their domains. This paper delves into the convective motion in a reactive fluid moving past a vertically perforated plate, governed by intense magnetic forces, the induced magnetic field (IMF) and Hall current. The model integrates factors like thermal radiation and thermo-diffusion (Soret effect). Formative equations for this model, which encapsulate the effects of distinct physical phenomena, are solved analytically. Graphical representations illuminate the influence of vital flow parameters on velocity, temperature, concentration fields, shear stresses and the rates of heat and mass transfer. From the graphs, it’s evident that Hall currents hinder the primary flow but enhance the secondary flow. A rise in radiation and suction parameters leads to a temperature drop. A heightened Soret number appears to magnify concentration distribution throughout the boundary layer. Intensifying suction at the plate diminishes the boundary layer’s thickness, which in turn elevates the heat and mass transfer rate. This physical model finds extensive applicability across sectors, encompassing metallurgy, magnetic fusion, plasma physics, materials fabrication, geothermal phenomena, geochemistry and ionospheric activities.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3