State-of-the-Art Review of Aliphatic Polyesters and Polyolefins Biodeterioration by Microorganisms: From Mechanism to Characterization

Author:

Khoshtinat Shiva1ORCID

Affiliation:

1. Department of Materials, Chemistry and Chemical Engineering “Giulio Natta”, Polytechnic University of Milan, 20133 Milan, Italy

Abstract

As a result of the exponential growth in the production of plastics and their extended degradation period, strong environmental concerns in association with the disposal of plastic waste have emerged. Pursuing sustainable solutions for managing plastic waste has led to significant interest in plastic biodegradation research, with a specific focus on biodeterioration facilitated by microorganisms. The biodeterioration of plastic by microorganisms is a complex phenomenon that can be influenced by a variety of environmental factors such as humidity, temperature, and pH, as well as polymer properties such as molecular structure, molecular weight, and crystallinity. Toward a better understanding of this phenomenon for resolving the issue of plastic waste, this review article focuses on the biodeterioration of synthetic polymers, in particular aliphatic polyesters and polyolefins, through the enzymatic activities of microorganisms. First, the mechanism of polymer biodegradation via enzymatic activity is discussed, followed by the physical properties of polymers and environmental conditions that influence their biodegradability rates. Then, an overview of experimental approaches and standardized protocols used to assess the biodegradability of polymers by these degrading agents is provided. Finally, current developments in employing biodeterioration for the degradation of aliphatic polyesters and polyolefins are reviewed. The review concludes with a discussion on the complexity of biodegradation by microorganisms, the necessity of proper engineering of polymer properties during production to enhance their biodegradability, and the need for further research to discover sustainable and environmentally acceptable alternatives.

Publisher

MDPI AG

Subject

General Medicine

Reference196 articles.

1. Ritchie, H., and Roser, M. (2018). Plastic Pollution. World Data, Published online.

2. Production, Use, and Fate of All Plastics Ever Made;Geyer;Sci. Adv.,2017

3. A Review of Plastic Waste Biodegradation;Zheng;Crit. Rev. Biotechnol.,2005

4. Abiotic and Biotic Environmental Degradation of the Bioplastic Polymer Poly(Lactic Acid): A Review;Karamanlioglu;Polym. Degrad. Stab.,2017

5. An Overview of the Recent Developments in Polylactide (PLA) Research;Nair;Bioresour. Technol.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3