Hemodynamic Insights into Abdominal Aortic Aneurysms: Bridging the Knowledge Gap for Improved Patient Care

Author:

Saha Suvash C.1ORCID,Francis Isabella1ORCID,Saha Goutam12ORCID,Huang Xinlei1,Molla Md. Mamun3ORCID

Affiliation:

1. School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia

2. Department of Mathematics, University of Dhaka, Dhaka 1000, Bangladesh

3. Department of Mathematics & Physics, North South University, Dhaka 1229, Bangladesh

Abstract

Background: Abdominal aortic aneurysms (AAAs) present a formidable public health concern due to their propensity for localized, anomalous expansion of the abdominal aorta. These insidious dilations, often in their early stages, mask the life-threatening potential for rupture, which carries a grave prognosis. Understanding the hemodynamic intricacies governing AAAs is paramount for predicting aneurysmal growth and the imminent risk of rupture. Objective: Our extensive investigation delves into this complex hemodynamic environment intrinsic to AAAs, utilizing comprehensive numerical analyses of the physiological pulsatile blood flow and realistic boundary conditions to explore the multifaceted dynamics influencing aneurysm rupture risk. Our study introduces novel elements by integrating these parameters into the overall context of aneurysm pathophysiology, thus advancing our understanding of the intricate mechanics governing their evolution and rupture. Methods: Conservation of mass and momentum equations are used to model the blood flow in an AAAs, and these equations are solved using a finite volume-based ANSYS Fluent solver. Resistance pressure outlets following a three-element Windkessel model were imposed at each outlet to accurately model the blood flow and the AAAs’ shear stress. Results: Our results uncover elevated blood flow velocities within an aneurysm, suggesting an augmented risk of future rupture due to increased stress in the aneurysm wall. During the systole phase, high wall shear stress (WSS) was observed, typically associated with a lower risk of rupture, while a low oscillatory shear index (OSI) was noted, correlating with a decreased risk of aneurysm expansion. Conversely, during the diastole phase, low WSS and a high OSI were identified, potentially weakening the aneurysm wall, thereby promoting expansion and rupture. Conclusion: Our study underscores the indispensable role of computational fluid dynamic (CFD) techniques in the diagnostic, therapeutic, and monitoring realms of AAAs. This body of research significantly advances our understanding of aneurysm pathophysiology, thus offering pivotal insights into the intricate mechanics underpinning their progression and rupture, informing clinical interventions and enhancing patient care.

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3