Impact of Geology on Seasonal Hydrological Predictability in Alpine Regions by a Sensitivity Analysis Framework

Author:

Stergiadi MariaORCID,Di Marco Nicola,Avesani DiegoORCID,Righetti Maurizio,Borga Marco

Abstract

Catchment geology has a major influence on the relative impact of the main seasonal hydrological predictability sources (initial conditions (IC), climate forcing (CF)) on the forecast skill as it defines the system’s persistence. A quantification of its effect, though, on the contribution of the predictability sources to the forecast skill has not been previously investigated. In this work we apply the End Point Blending (EPB) framework to assess the contribution of IC and CF to the seasonal streamflow forecast skill over two catchments that represent the end members of a set of catchments of contrasting geology, hence contrasting hydrological response: a highly-permeable, hence slow-responding catchment and a fast-responding catchment of low permeability. Our results show that the contribution of IC in the slow-responding catchment is higher by up to 44% for forecasts initialized in winter and spring and by up to 21% for forecasts initialized in summer. IC are important for up to 4 months of lead in the slow-responding catchment and 2 months of lead in the flashier catchment. Our analysis highlights the added value of the EPB in comparison to the traditional ESP/revESP approach for identifying the sources of seasonal hydrological predictability, on the basis of catchment geology.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3