Effects of Tool Tooth Number and Cutting Parameters on Milling Performance for Bamboo–Plastic Composite

Author:

Song Meiqi12,Buck Dietrich3,Yu Yingyue2,Du Xiaohang2,Guo Xiaolei4ORCID,Wang Jinxin45,Zhu Zhaolong12ORCID

Affiliation:

1. Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China

2. College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China

3. Department of Wood Science and Engineering, Luleå University of Technology, 931 87 Skellefteå, Sweden

4. College of Materials Science and Technology, Nanjing Forestry University, Nanjing 210037, China

5. Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK

Abstract

Cutting force and temperature are critical indicators for improving cutting performance and productivity. This study used an up-milling experiment to ascertain the effect of tool tooth number, cutting speed, and depth on the machinability of bamboo–plastic composite. We focused on the changes in the resultant force and cutting temperature under different milling conditions. A response surface methodology was used to build prediction models for the resultant force and temperature. A verification test was conducted to prove the model’s reliability. The empirical findings suggested that the number of tool teeth had the most significant impacts on both the resultant force and the cutting temperature, followed by the depth of cut and the cutting speed. Moreover, the resultant force and cutting temperature showed increasing trends with decreasing numbers of tool teeth and increasing cut depths. However, cutting speed had a negative relationship with the resultant force and a positive relationship with temperature. We also determined the optimal milling conditions with the lowest force and temperature: four tool teeth, 300 m/min cutting speed, and 0.5 mm depth. This parameter combination can be used in the industrial manufacture of bamboo–plastic composite to improve tool life and manufacturing productivity.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Nanjing Forestry University

Technology Innovation Alliance of Wood/Bamboo Industry

International Cooperation Joint Laboratory for Production, Education, Research and Application of Ecological Health Care on Home Furnishing

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3