Deformation rate of engineered wood flooring with response surface methodology and adaptive network-based fuzzy inference system

Author:

Wang HuixiangORCID

Abstract

Controlling the deformation rate is the key to improving the product quality of engineered wood flooring. In this work, the changes in the deformation rate of engineered wood flooring were in focus with cold-pressing, response surface methodology, and adaptive network-based fuzzy inference system were used to explore the relationship between deformation rate and processing parameters, including adhesive spreading rate, pressing time, and pressing pressure. According to the results, the deformation rate was positively related to pressing time, while it increased first and then decreased with both the increase of adhesive spreading rate and pressing pressure. Meanwhile, a mathematical model was developed, and the significant influence of each term on the deformation rate was analyzed. This model had high feasibility and can be used to describe the relationship between the deformation rate and processing parameters. Furthermore, an adaptive network-based fuzzy inference system model was established. It has higher accuracy than that of the response surface methodology model, and it can be used for predicting deformation rate and optimizing processing parameters. Finally, an optimal processing conditions with the lowest deformation rate was determined as follows: 147 g/m2 adhesive spreading rate, 12s pressing time, and 1.2 MPa pressing pressure, and it hope to be adopted in the industrial processing of engineered wood flooring with respective of the higher product quality and lower production costs.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference32 articles.

1. Modelling of impact falling ball test response on solid and engineered wood flooring of two Eucalyptus species;L Acuña;Forests,2020

2. Effects of working time on properties of a soybean meal-based adhesive for engineered wood flooring;Z Sun;The Journal of Adhesion,2022

3. Contribution of engineered wood flooring components to its hygromechanical behavior;P. Blanchet;Forest Prod J,2008

4. Effects of decorative veneer and structure on the thermal conductivity of engineered wood flooring;Q Chen;BioResources,2015

5. Wood-adhesive interface characterization and modeling in engineered wood flooring;B Belleville;Wood and Fiber Science,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3