Smart and Rapid Design of Nanophotonic Structures by an Adaptive and Regularized Deep Neural Network

Author:

Li RenjieORCID,Gu XiaozheORCID,Shen Yuanwen,Li Ke,Li Zhen,Zhang Zhaoyu

Abstract

The design of nanophotonic structures based on deep learning is emerging rapidly in the research community. Design methods using Deep Neural Networks (DNN) are outperforming conventional physics-based simulations performed iteratively by human experts. Here, a self-adaptive and regularized DNN based on Convolutional Neural Networks (CNNs) for the smart and fast characterization of nanophotonic structures in high-dimensional design parameter space is presented. This proposed CNN model, named LRS-RCNN, utilizes dynamic learning rate scheduling and L2 regularization techniques to overcome overfitting and speed up training convergence and is shown to surpass the performance of all previous algorithms, with the exception of two metrics where it achieves a comparable level relative to prior works. We applied the model to two challenging types of photonic structures: 2D photonic crystals (e.g., L3 nanocavity) and 1D photonic crystals (e.g., nanobeam) and results show that LRS-RCNN achieves record-high prediction accuracies, strong generalizibility, and substantially faster convergence speed compared to prior works. Although still a proof-of-concept model, the proposed smart LRS-RCNN has been proven to greatly accelerate the design of photonic crystal structures as a state-of-the-art predictor for both Q-factor and V. It can also be modified and generalized to predict any type of optical properties for designing a wide range of different nanophotonic structures. The complete dataset and code will be released to aid the development of related research endeavors.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Fund

Shenzhen Key Laboratory Project

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference64 articles.

1. Deep learning

2. Deep Learning;Goodfellow,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3