POViT: Vision Transformer for Multi-Objective Design and Characterization of Photonic Crystal Nanocavities

Author:

Chen XinyuORCID,Li RenjieORCID,Yu YueyaoORCID,Shen Yuanwen,Li WenyeORCID,Zhang Yin,Zhang ZhaoyuORCID

Abstract

We study a new technique for solving the fundamental challenge in nanophotonic design: fast and accurate characterization of nanoscale photonic devices with minimal human intervention. Much like the fusion between Artificial Intelligence and Electronic Design Automation (EDA), many efforts have been made to apply deep neural networks (DNN) such as convolutional neural networks to prototype and characterize next-gen optoelectronic devices commonly found in Photonic Integrated Circuits. However, state-of-the-art DNN models are still far from being directly applicable in the real world: e.g., DNN-produced correlation coefficients between target and predicted physical quantities are about 80%, which is much lower than what it takes to generate reliable and reproducible nanophotonic designs. Recently, attention-based transformer models have attracted extensive interests and been widely used in Computer Vision and Natural Language Processing. In this work, we for the first time propose a Transformer model (POViT) to efficiently design and simulate photonic crystal nanocavities with multiple objectives under consideration. Unlike the standard Vision Transformer, our model takes photonic crystals as input data and changes the activation layer from GELU to an absolute-value function. Extensive experiments show that POViT significantly improves results reported by previous models: correlation coefficients are increased by over 12% (i.e., to 92.0%) and prediction errors are reduced by an order of magnitude, among several key metric improvements. Our work has the potential to drive the expansion of EDA to fully automated photonic design (i.e., PDA). The complete dataset and code will be released to promote research in the interdisciplinary field of materials science/physics and computer science.

Funder

National Natural Science Foundation of China

Shenzhen Fundamental Research Fund

Shenzhen Key Laboratory Project

Longgang Key Laboratory Project

Longgang Matching Support Fund

President’s Fund

Optical Communication Core Chip Research Platform

Shenzhen Science and Technology Program

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Research Institute of Big Data

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference47 articles.

1. Deep learning in medical imaging: General overview;Lee;Korean J. Radiol.,2017

2. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique;Greenspan;IEEE Trans. Med. Imaging,2016

3. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst., 30, Available online: https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

4. Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., and Funtowicz, M. (2019). Huggingface’s transformers: State-of-the-art natural language processing. arXiv.

5. Deep learning for safe autonomous driving: Current challenges and future directions;Muhammad;IEEE Trans. Intell. Transp. Syst.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3