Systematic Boolean Satisfiability Programming in Radial Basis Function Neural Network

Author:

Mansor Mohd. AsyrafORCID,Mohd Jamaludin Siti ZulaikhaORCID,Mohd Kasihmuddin Mohd ShareduwanORCID,Alzaeemi Shehab Abdulhabib,Md Basir Md FaisalORCID,Sathasivam SarathaORCID

Abstract

Radial Basis Function Neural Network (RBFNN) is a class of Artificial Neural Network (ANN) that contains hidden layer processing units (neurons) with nonlinear, radially symmetric activation functions. Consequently, RBFNN has extensively suffered from significant computational error and difficulties in approximating the optimal hidden neuron, especially when dealing with Boolean Satisfiability logical rule. In this paper, we present a comprehensive investigation of the potential effect of systematic Satisfiability programming as a logical rule, namely 2 Satisfiability (2SAT) to optimize the output weights and parameters in RBFNN. The 2SAT logical rule has extensively applied in various disciplines, ranging from industrial automation to the complex management system. The core impetus of this study is to investigate the effectiveness of 2SAT logical rule in reducing the computational burden for RBFNN by obtaining the parameters in RBFNN. The comparison is made between RBFNN and the existing method, based on the Hopfield Neural Network (HNN) in searching for the optimal neuron state by utilizing different numbers of neurons. The comparison was made with the HNN as a benchmark to validate the final output of our proposed RBFNN with 2SAT logical rule. Note that the final output in HNN is represented in terms of the quality of the final states produced at the end of the simulation. The simulation dynamic was carried out by using the simulated data, randomly generated by the program. In terms of 2SAT logical rule, simulation revealed that RBFNN has two advantages over HNN model: RBFNN can obtain the correct final neuron state with the lowest error and does not require any approximation for the number of hidden layers. Furthermore, this study provides a new paradigm in the field feed-forward neural network by implementing a more systematic propositional logic rule.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3