Deep learning and data fusion to estimate surface soil moisture from multi-sensor satellite images

Author:

Singh Abhilash,Gaurav Kumar

Abstract

AbstractWe propose a new architecture based on a fully connected feed-forward Artificial Neural Network (ANN) model to estimate surface soil moisture from satellite images on a large alluvial fan of the Kosi River in the Himalayan Foreland. We have extracted nine different features from Sentinel-1 (dual-polarised radar backscatter), Sentinel-2 (red and near-infrared bands), and Shuttle Radar Topographic Mission (digital elevation model) satellite products by leveraging the linear data fusion and graphical indicators. We performed a feature importance analysis by using the regression ensemble tree approach and also feature sensitivity to evaluate the impact of each feature on the response variable. For training and assessing the model performance, we conducted two field campaigns on the Kosi Fan in December 11–19, 2019 and March 01–06, 2022. We used a calibrated TDR probe to measure surface soil moisture at 224 different locations distributed throughout the fan surface. We used input features to train, validate, and test the performance of the feed-forward ANN model in a 60:10:30 ratio, respectively. We compared the performance of ANN model with ten different machine learning algorithms [i.e., Generalised Regression Neural Network (GRNN), Radial Basis Network (RBN), Exact RBN (ERBN), Gaussian Process Regression (GPR), Support Vector Regression (SVR), Random Forest (RF), Boosting Ensemble Learning (Boosting EL), Recurrent Neural Network (RNN), Binary Decision Tree (BDT), and Automated Machine Learning (AutoML)]. We observed that the ANN model accurately predicts the soil moisture and outperforms all the benchmark algorithms with correlation coefficient (R = 0.80), Root Mean Square Error (RMSE = 0.040 $$\mathrm {m^3/m^3}$$ m 3 / m 3 ), and bias = 0.004 $$\mathrm {m^3/m^3}$$ m 3 / m 3 . Finally, for an unbiased and robust conclusion, we performed spatial distribution analysis by creating thirty different sets of training-validation-testing datasets. We observed that the performance remains consistent in all thirty scenarios. The outcomes of this study will foster new and existing applications of soil moisture.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3