Land Subsidence Phenomena vs. Coastal Flood Hazard—The Cases of Messolonghi and Aitolikon (Greece)

Author:

Antoniadis Nikolaos1ORCID,Alatza Stavroula2,Loupasakis Constantinos1ORCID,Kontoes Charalampos (Haris)2

Affiliation:

1. School of Mining and Metallurgical Engineering, Department of Geological Sciences, Zographou Campus, National Technical University of Athens, GR-157 80 Athens, Greece

2. National Observatory of Athens (NOA), Operational Unit BEYOND Centre for Earth Observation Research and Satellite Remote Sensing, Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, GR-152 36 Athens, Greece

Abstract

Land subsidence in coastal and delta cities often results in infrastructure and residential building damages, while also increasing the area’s flooding vulnerability. The coastal cities of Messolonghi and Aitolikon are typical examples, as they are built on top of old stream deposits near the coast. In the last several years, the gradual subsidence of the sites, combined with the impact of climate change, resulted in multiple floods. The rush of seawater over the lowlands has also been reported. Persistent scatterer interferometry (PSI) is a remote-sensing technique that can provide a reliable and cost-effective solution, as it can be used to identify and monitor soil displacements. In this study, a novel parallelized PSI (P-PSI) processing chain, developed by the Operational Unit Center for Earth Observation Research and Satellite Remote Sensing (BEYOND) of the National Observatory of Athens, as well as the Copernicus EGMS product were used to identify these displacements. The results were examined in correlation with other potential factors such as the overexploitation of the underground water, the natural compaction of the clay soil layers, the primary and secondary consolidation due to the external construction loading, the oxidation of the organic soils, tidal gauge data, precipitation data, and ground truth data. In Messolonghi, various deformation rates were recorded, with maximum mean values of −5 mm/year in the eastern part, whereas in Aitolikon, the maximum values were around −4.5 mm/year. The displacements were mostly attributed to the primary consolidation due to the building loads. Deformation patterns and their correlation with precipitation could also be witnessed. It was evident that the increased precipitation rates and sea level rise played a leading role in the constant flooding.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3