Surface Subsidence Characteristics and Causes Analysis in Ningbo Plain by Sentinel-1A TS-InSAR

Author:

Tang Weilin1,Ng Alex Hay-Man12ORCID,Wang Hua3,Kuang Jianming14,Du Zheyuan45

Affiliation:

1. Department of Surveying Engineering, Guangdong University of Technology, Guangzhou 510006, China

2. Key Laboratory for City Cluster Environmental Safety and Green, Development of the Ministry of Education, Guangdong University of Technology, Guangzhou 510006, China

3. College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China

4. School of Civil and Environmental Engineering, the University of New South Wales (UNSW), Sydney, NSW 2052, Australia

5. Geoscience Australia, Canberra, ACT 2609, Australia

Abstract

In recent years, the Ningbo Plain has experienced significant surface subsidence due to urbanization and industrialization, combined with the area’s unique geological and hydrological conditions. To study the surface subsidence and its causes in the Ningbo Plain, this study analyzed 166 scenes of Sentinel-1A SAR images between January 2018 and June 2023. The time series interferometric synthetic aperture radar (TS-InSAR) technique was used to acquire surface subsidence information in the area. The causes of subsidence were analyzed. The results show that: (1) the annual deformation rate of the Ningbo Plain ranges from −44 mm/yr to 12 mm/yr between 2018 and 2023. A total of 15 major subsidence zones were identified by using both the subsidence rate map and optical imagery. The most severe subsidence occurred in the northern industrial park of Cixi City, with a maximum subsidence rate of −37 mm/yr. The study reveals that the subsidence issue in the main urban area has been significantly improved compared to the 2017 subsidence data from the Ningbo Bureau of Natural Resources and Planning. However, three new subsidence areas have emerged in the main urban area, located, respectively, in Gaoqiao Town, Lishe Town, and Qiuyi Village, with maximum rates of −29 mm/year, −24 mm/year, and −23 mm/year, respectively. (2) The causes of subsidence were analyzed using various data, including land use data, geological data, groundwater-monitoring data, and transportation network data. It is found that a strong link exists between changes in groundwater levels, compressible layer thickness, and surface subsidence. The groundwater levels changes and the soft soil layer thickness are the main natural factors causing subsidence in the Ningbo Plain. Additionally, the interaction between static loads from large-scale industrial production and urban construction, along with the dynamic loads from transportation networks, contribute significantly to surface subsidence in the Ningbo Plain. The results from this study enhance the understanding of the driving factors of subsidence in the Ningbo Plain, which can provide necessary guidance for the economic development and decision-making in the region, helping to manage and potentially mitigate future subsidence issues.

Funder

National Natural Science Foundation of China

Guangdong Introducing Innovative and Entrepreneurial Teams

Guangdong Forestry Science Data Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3