A Technology for Seismogenic Process Monitoring and Systematic Earthquake Forecasting

Author:

Gitis Valery1ORCID,Derendyaev Alexander1ORCID

Affiliation:

1. The Institute for Information Transmission Problems, B. Karetny, 19, 127051 Moscow, Russia

Abstract

Earthquakes are a severe natural phenomenon that require continuous monitoring, analysis, and forecasting to mitigate their risks. Seismological data have long been used for this purpose, but geodynamic data from remote sensing of surface displacements have become available in recent decades. In this paper, we present a novel information technology for monitoring, analyzing seismogenic fields, and predicting earthquakes using Earth remote sensing data presented as a time series of surface displacement points for systematic regional earthquake prediction. We demonstrate, for the first time, the successful application of this technology and discuss the method of the minimum area of alarm, which was developed for machine learning and systematic earthquake prediction, as well as the architecture and tools of the GIS platform. Our technology is implemented as a network platform consisting of two GISs. The first GIS automatically loads earthquake catalog data and GPS time series, calculates spatiotemporal fields, performs systematic earthquake prediction in multiple seismically active regions, and provides intuitive mapping tools to analyze seismic processes. The second GIS is designed for scientific research of spatiotemporal processes, including those related to earthquake forecasting. We demonstrate the effectiveness of platform analysis tools that are intuitive and accessible to a wide range of users in solving problems of systematic earthquake prediction. Additionally, we provide examples of scientific research on earthquake prediction using the second GIS, including the effectiveness of using GPS data for forecasting earthquakes in California, estimating the density fields of earthquake epicenters using the adaptive weighted smoothing (AWS) method for predicting earthquakes in Kamchatka, and studying earthquake forecasts in the island part of the territory of Japan using the earthquake catalog and GPS. Our examples demonstrate that the method of the minimum area of alarm used for machine learning is effective for forecasting both catalog and remote sensing data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Hyndman, D., and Hyndman, D. (2016). Natural Hazards and Disasters, Cengage Learning.

2. Sobolev, G. (1993). Principles of Earthquake Prediction, Nauka Publishing House.

3. Sobolev, G., and Ponomarev, A. (2003). Earthquake Physics and Precursors, Nauka Publishing House.

4. Earthquakes cannot be predicted;Geller;Science,1997

5. Unpredictability of earthquakes as a fundamental consequence of the nonlinearity of geodynamic systems;Koronovskii;Vestn. Mgu. Ser. 4 Geol.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3