Epoch-Wise Estimation and Analysis of GNSS Receiver DCB under High and Low Solar Activity Conditions

Author:

Zhang Xiao123,Xia Linyuan1,Lin Hong23,Li Qianxia1ORCID

Affiliation:

1. School of Geography and Planning, Sun Yat-sen University, Guangzhou 510006, China

2. Guangzhou Urban Planning and Design Survey Research Institute, Guangzhou 510003, China

3. Guangdong Enterprise Key Laboratory for Urban Sensing, Monitoring and Early Warning, Guangzhou 510003, China

Abstract

Differential code bias (DCB) is one of the main errors involved in ionospheric total electron content (TEC) retrieval using a global navigation satellite system (GNSS). It is typically assumed to be constant over time. However, this assumption is not always valid because receiver DCBs have long been known to exhibit apparent intraday variations. In this paper, a combined method is introduced to estimate the epoch-wise receiver DCB, which is divided into two parts: the receiver DCB at the initial epoch and its change with respect to the initial value. In the study, this method was proved feasible by subsequent experiments and was applied to analyze the possible reason for the intraday receiver DCB characteristics of 200 International GNSS Service (IGS) stations in 2014 (high solar activity) and 2017 (low solar activity). The results show that the proportion of intraday receiver DCB stability less than 1 ns increased from 72.5% in 2014 to 87% in 2017, mainly owing to the replacement of the receiver hardware in stations. Meanwhile, the intraday receiver DCB estimates in summer generally exhibited more instability than those in other seasons. Although more than 90% of the stations maintained an intraday receiver DCB stability within 2 ns, substantial variations with a peak-to-peak range of 5.78 ns were detected for certain stations, yielding an impact of almost 13.84 TECU on the TEC estimates. Moreover, the intraday variability of the receiver DCBs is related to the receiver environment temperature. Their correlation coefficient (greater than 0.5 in our analyzed case) increases with the temperature. By contrast, the receiver firmware version does not exert a great impact on the intraday variation characteristics of the receiver DCB in this case.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3