Detection of Aphids on Hyperspectral Images Using One-Class SVM and Laplacian of Gaussians

Author:

Peignier Sergio1ORCID,Lacotte Virginie1ORCID,Duport Marie-Gabrielle2,Baa-Puyoulet Patrice2ORCID,Simon Jean-Christophe3ORCID,Calevro Federica2ORCID,Heddi Abdelaziz1ORCID,da Silva Pedro1ORCID

Affiliation:

1. Univ Lyon, INSA Lyon, INRAE, BF2I UMR 203, 69621 Villeurbanne, France

2. Univ Lyon, INRAE, INSA Lyon, BF2I UMR 203, 69621 Villeurbanne, France

3. IGEPP, INRAE, Institute Agro, University Rennes, 35653 Le Rheu, France

Abstract

Aphids cause severe damage to agricultural crops, resulting in significant economic losses, and an increased use of pesticides with decreased efficiency. Monitoring aphid infestations through regular field surveys is time-consuming and does not always provide an accurate spatiotemporal representation of the distribution of pests. Therefore, an automated, non-destructive method to detect and evaluate aphid infestation would be beneficial for targeted treatments. In this study, we present a machine learning model to identify and quantify aphids, localizing their spatial distribution over leaves, using a One-Class Support Vector Machine and Laplacian of Gaussians blob detection. To train this model, we built the first large database of aphids’ hyperspectral images, which were captured in a controlled laboratory environment. This database contains more than 160 images of three aphid lines, distinctive in color, shape, and developmental stages, and are displayed laying on leaves or neutral backgrounds. This system exhibits high-quality validation scores, with a Precision of 0.97, a Recall of 0.91, an F1 score of 0.94, and an AUPR score of 0.98. Moreover, when assessing this method on new and challenging images, we did not observe any false negatives (and only a few false positives). Our results suggest that a machine learning model of this caliber could be a promising tool to detect aphids for targeted treatments in the field.

Funder

INSA Lyon

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference68 articles.

1. Acyrthosiphon pisum;Calevro;Trends Genet.,2019

2. Olson, K.D., Badibanga, T.M., and DiFonzo, C. (2023, March 22). Farmers’ Awareness and Use of IPM for Soybean Aphid Control: Report of Survey Results for the 2004, 2005, 2006, and 2007 Crop Years. Technical Report. Available online: https://ageconsearch.umn.edu/record/7355.

3. Economic threshold for soybean aphid (Hemiptera: Aphididae);Ragsdale;J. Econ. Entomol.,2007

4. Rapid evolution of aphid pests in agricultural environments;Simon;Curr. Opin. Insect Sci.,2018

5. Consortium, I.A.G. (2010). Genome sequence of the pea aphid Acyrthosiphon pisum. PLoS Biol., 8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3