Hyperspectral Imaging and Machine Learning: A Promising Tool for the Early Detection of Tetranychus urticae Koch Infestation in Cotton

Author:

Yamada Mariana1,Thiesen Leonardo Vinicius1ORCID,Iost Filho Fernando Henrique1ORCID,Yamamoto Pedro Takao1

Affiliation:

1. Department of Entomology and Acarology, University of São Paulo, Piracicaba 13418-900, Brazil

Abstract

Monitoring Tetranychus urticae Koch in cotton crops is challenging due to the vast crop areas and clustered mite attacks, hindering early infestation detection. Hyperspectral imaging offers a solution to such a challenge by capturing detailed spectral information for more accurate pest detection. This study evaluated machine learning models for classifying T. urticae infestation levels in cotton using proximal hyperspectral remote sensing. Leaf reflection data were collected over 21 days, covering various infestation levels: no infestation (0 mites/leaf), low (1–10), medium (11–30), and high (>30). Data were preprocessed, and spectral bands were selected to train six machine learning models, including Random Forest (RF), Principal Component Analysis–Linear Discriminant Analysis (PCA-LDA), Feedforward Neural Network (FNN), Support Vector Machine (SVM), k-Nearest Neighbor (kNN), and Partial Least Squares (PLS). Our analysis identified 31 out of 281 wavelengths in the near-infrared (NIR) region (817–941 nm) that achieved accuracies between 80% and 100% across 21 assessment days using Random Forest and Feedforward Neural Network models to distinguish infestation levels. The PCA loadings highlighted 907.69 nm as the most significant wavelength for differentiating levels of two-spotted mite infestation. These findings are significant for developing novel monitoring methodologies for T. urticae in cotton, offering insights for early detection, potential cost savings in cotton production, and the validation of the spectral signature of T. urticae damage, thus enabling more efficient monitoring methods.

Funder

São Paulo Advanced Research Center in Biological Control (SPARCBIO) FAPESP-Koppert

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Reference81 articles.

1. Companhia Nacional De Abastecimento—CONAB (2024, February 04). Algodão, Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/898-algodao.

2. Severino, L.S., Rodrigues, S.M.M., Chitarra, L.G., Filho, L., Contini, E., Mota, M., Marra, R., and Araújo, A. (2024, February 07). Algodão: Caracterização e Desafios Tecnológicos. Campina Grande: Embrapa Algodão. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/198192/1/SerieDesafiosAgronegocioBrasileiroNT3Algodao.pdf.

3. Moraes, G.J., and Flechtmann, C.H.W. (2008). Manual de Acarologia Acarologia Básica e Ácaros de Plantas Cultivadas no Brasil, Holos.

4. The concept of life types in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae;Saito;Acarologia,1983

5. Ecological and agricultural considerations in the management of twospotted spider mite (Tetranychus urticae Koch);Brandenburg;Agric. Zool. Rev.,1987

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3