Analysis and Recommendations for LED Catastrophic Failure Due to Voltage Stress

Author:

Letha Shimi SudhaORCID,Bollen Math H. J.ORCID,Rönnberg Sarah K.

Abstract

Light-emitting diode (LED) lighting has, compared to other types of lighting, a significantly lower energy consumption. However, the perceived service life is also important for customer satisfaction and here there is a discrepancy between customers’ experience and manufacturers’ statements. Many customers experience a significantly shorter service life than claimed by the manufacturers. An experiment was carried out in the Pehr Högström Laboratory at Luleå University of Technology in Skellefteå, Sweden to investigate whether voltage disturbances could explain this discrepancy. Over 1000 LED lamps were exposed to high levels of voltage disturbances for more than 6000 h; the failure rate from this experiment was similar to the one from previous experiments in which lamps were exposed to normal voltage. The discrepancy thus remains, even though some possible explanations have emerged from the project’s results. The lamps were exposed to five different types of voltage disturbances: short interruptions; transients; overvoltage; undervoltage; and harmonics. Only overvoltage resulted in failure of the lamps, and only for a single topology of lamp. A detailed analysis has been made of the topology of lamps that failed. This lamp type contains a different internal electronics circuit than the other lamp types. Failures of the lamps when exposed to overvoltage are due to the heat development in the control circuit increasing sharply when the lamps are exposed to a higher voltage. Hence, it is concluded that there are lamps that are significantly more sensitive to voltage disturbances than other lamp types. Manufactures need to consider the voltage quality that can be expected at the terminal of the lamp to prevent failure of lamps due to voltage disturbances. This paper therefore contains recommendations for manufacturers of lighting; the recommendations describe which voltage disturbances lamps should cope with.

Funder

Swedish Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3