Abstract
Vibrio cincinnatiensis is a poorly understood pathogenic Vibrio species, and the underlying mechanisms of its genetic diversity, genomic plasticity, evolutionary dynamics, and pathogenicity have not yet been comprehensively investigated. Here, a comparative genomic analysis of V. cincinnatiensis was constructed. The open pan-genome with a flexible gene repertoire exhibited genetic diversity. The genomic plasticity and stability were characterized by the determinations of diverse mobile genetic elements (MGEs) and barriers to horizontal gene transfer (HGT), respectively. Evolutionary divergences were exhibited by the difference in functional enrichment and selective pressure between the different components of the pan-genome. The evolution on the Chr I and Chr II core genomes was mainly driven by purifying selection. Predicted essential genes in V. cincinnatiensis were mainly found in the core gene families on Chr I and were subject to stronger evolutionary constraints. We identified diverse virulence-related elements, including the gene clusters involved in encoding flagella, secretion systems, several pili, and scattered virulence genes. Our results indicated the pathogenic potential of V. cincinnatiensis and highlighted that HGT events from other Vibrio species promoted pathogenicity. This pan-genome study provides comprehensive insights into this poorly understood species from the genomic perspective.
Funder
Shandong Provincial Natural Science Foundation
Scientific Research Foundation of Shandong Agricultural University
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献