Nitrogen-Doped Zinc Oxide for Photo-Driven Molecular Hydrogen Production

Author:

Cerrato ErikORCID,Privitera AlbertoORCID,Chiesa Mario,Salvadori EnricoORCID,Paganini Maria CristinaORCID

Abstract

Due to its thermal stability, conductivity, high exciton binding energy and high electron mobility, zinc oxide is one of the most studied semiconductors in the field of photocatalysis. However, the wide bandgap requires the use of UV photons to harness its potential. A convenient way to appease such a limitation is the doping of the lattice with foreign atoms which, in turn, introduce localized states (defects) within the bandgap. Such localized states make the material optically active in the visible range and reduce the energy required to initiate photo-driven charge separation events. In this work, we employed a green synthetic procedure to achieve a high level of doping and have demonstrated how the thermal treatment during synthesis is crucial to select specific the microscopic (molecular) nature of the defect and, ultimately, the type of chemistry (reduction versus oxidation) that the material is able to perform. We found that low-temperature treatments produce material with higher efficiency in the water photosplitting reaction. This constitutes a further step in the establishment of N-doped ZnO as a photocatalyst for artificial photosynthesis.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3