Highly Active Nanocrystalline ZnO and Its Photo-Oxidative Properties towards Acetone Vapor

Author:

Chizhov Artem1,Kutukov Pavel1ORCID,Gulin Alexander2,Astafiev Artyom2,Rumyantseva Marina1ORCID

Affiliation:

1. Chemistry Department, Moscow State University, Moscow 119991, Russia

2. N.N. Semenov Federal Research Center for Chemical Physics of Russian Academy of Sciences, Moscow 119991, Russia

Abstract

Zinc oxide is one of the well-known photocatalysts, the potential applications of which are of great importance in photoactivated gas sensing, water and air purification, photocatalytic synthesis, among others. However, the photocatalytic performance of ZnO strongly depends on its morphology, composition of impurities, defect structure, and other parameters. In this paper, we present a route for the synthesis of highly active nanocrystalline ZnO using commercial ZnO micropowder and ammonium bicarbonate as starting precursors in aqueous solutions under mild conditions. As an intermediate product, hydrozincite is formed with a unique morphology of nanoplates with a thickness of about 14–15 nm, the thermal decomposition of which leads to the formation of uniform ZnO nanocrystals with an average size of 10–16 nm. The synthesized highly active ZnO powder has a mesoporous structure with a BET surface area of 79.5 ± 4.0 m2/g, an average pore size of 20 ± 2 nm, and a cumulative pore volume of 0.507 ± 0.051 cm3/g. The defect-related PL of the synthesized ZnO is represented by a broad band with a maximum at 575 nm. The crystal structure, Raman spectra, morphology, atomic charge state, and optical and photoluminescence properties of the synthesized compounds are also discussed. The photo-oxidation of acetone vapor over ZnO is studied by in situ mass spectrometry at room temperature and UV irradiation (λmax = 365 nm). The main products of the acetone photo-oxidation reaction, water and carbon dioxide, are detected by mass spectrometry, and the kinetics of their release under irradiation are studied. The effect of morphology and microstructure on the photo-oxidative activity of ZnO samples is demonstrated.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3