Integrative Physiological and Transcriptomic Analysis Reveals the Transition Mechanism of Sugar Phloem Unloading Route in Camellia oleifera Fruit

Author:

Zhou Jing,Du Bingshuai,Chen Yuqing,Cao Yibo,Yu Mingxin,Zhang LingyunORCID

Abstract

Sucrose phloem unloading plays a vital role in photoassimilate distribution and storage in sink organs such as fruits and seeds. In most plants, the phloem unloading route was reported to shift between an apoplasmic and a symplasmic pattern with fruit development. However, the molecular transition mechanisms of the phloem unloading pathway still remain largely unknown. In this study, we applied RNA sequencing to profile the specific gene expression patterns for sucrose unloading in C. oleifera fruits in the apo- and symplasmic pathways that were discerned by CF fluoresce labelling. Several key structural genes were identified that participate in phloem unloading, such as PDBG11, PDBG14, SUT8, CWIN4, and CALS10. In particular, the key genes controlling the process were involved in callose metabolism, which was confirmed by callose staining. Based on the co-expression network analysis with key structural genes, a number of transcription factors belonging to the MYB, C2C2, NAC, WRKY, and AP2/ERF families were identified to be candidate regulators for the operation and transition of phloem unloading. KEGG enrichment analysis showed that some important metabolism pathways such as plant hormone metabolism, starch, and sucrose metabolism altered with the change of the sugar unloading pattern. Our study provides innovative insights into the different mechanisms responsible for apo- and symplasmic phloem unloading in oil tea fruit and represents an important step towards the omics delineation of sucrose phloem unloading transition in crops.

Funder

National Natural Science Foundation of China

National Key R&D Program Project Funding

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3