Phloem Transport: Cellular Pathways and Molecular Trafficking

Author:

Turgeon Robert1,Wolf Shmuel2

Affiliation:

1. Department of Plant Biology, Cornell University, Ithaca, New York 14853;

2. The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and the Otto Warburg Minerva Center for Agricultural Biotechnology, The Hebrew University of Jerusalem, Faculty of Agricultural, Food and Environmental Quality Sciences, Rehovot 76100, Israel;

Abstract

The phloem transports nutrients, defensive compounds, and informational signals throughout vascular plants. Sampling the complex components of mobile phloem sap is difficult because of the damage incurred when the pressurized sieve tubes are breached. In this review we discuss sampling methods, the artifacts that can be introduced by different sampling procedures, the intricate pathways by which materials enter and exit the phloem, and the major types of compounds transported. Loading and unloading patterns are largely determined by the conductivity and number of plasmodesmata and the position-dependent function of solute-specific, plasma membrane transport proteins. Recent evidence indicates that mobile proteins and RNA are part of the plant's long-distance communication signaling system. Evidence also exists for the directed transport and sorting of macromolecules as they pass through plasmodesmata. A future challenge is to dissect the molecular and cellular aspects of long-distance macromolecular trafficking in the signal transduction pathways of the whole plant.

Publisher

Annual Reviews

Subject

Cell Biology,Plant Science,Molecular Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3