Zinc Slag as a Partial or Total Replacement for Mineral Filler in Warm Mix Asphalt and Its Effects on Self-Healing Capacity and Performance Characteristics

Author:

Fakhri Mansour,Javadi Sajad,Sassani Alireza,Torabi-Dizaji Mohsen

Abstract

Utilizing the self-healing properties of asphalt materials is a way to improve the service life of asphalt pavements. Enhanced self-healing capabilities can be achieved through mixture modification. Using waste or by-product materials to modify asphalt mixtures can provide further environmental benefits. However, with a given mixture modification method, the resulting materials should be adequately vetted to ensure that enhanced self-healing capability is not attained at the expense of the mixture’s overall performance. This research aims to investigate the feasibility of using zinc slag filler to enhance the self-healing properties of warm mix asphalt (WMA) and evaluates the rutting susceptibility and moisture-resistance of the slag-modified mixtures. To this end, zinc slag filler was used to replace a portion of the mineral filler at different replacement rates in WMA mixtures. Self-healing capabilities of the resulting mixtures were studied under microwave induction heating. The influence of zinc slag modification on asphalt mixture’s characteristics and conventional performance indicators were evaluated by the Texas boiling test, the three-point bending test, and the Kim test (a deformation test). Also, the adhesion between bitumen and aggregate was evaluated using the broken sample from the three-point bending test and digital image analysis. The results of self-healing tests demonstrated that the heat generation capability of the specimens increased with filler replacement rate, such that the specimens with 100% of the mineral filler replaced with slag showed the highest heating performance. Zinc slag filler showed the potential to improve the moisture resistance of WMA by enhancing aggregate–bitumen adhesion and thus reducing stripping. The slag-modified WMA samples exhibited better tensile strength ratio (TSR) and deformation resistance than their non-modified equivalents.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3