High-Performance Thermal Interface Materials with Magnetic Aligned Carbon Fibers

Author:

Wu Qi,Miao Jianyin,Li Wenjun,Yang Qi,Huang Yanpei,Fu Zhendong,Yang Le

Abstract

Thermal interface materials with high thermal conductivity and low hardness are crucial to the heat dissipation of high-power electronics. In this study, a high magnetic field was used to align the milled carbon fibers (CFs, 150 μm) in silicone rubber matrix to fabricate thermal interface materials with an ordered and discontinuous structure. The relationship among the magnetic field density, the alignment degree of CFs, and the properties of the resulting composites was explored by experimental study and theoretical analysis. The results showed higher alignment degree and enhanced thermal conductivity of composites under increased magnetic flux density within a certain curing time. When the magnetic flux density increased to 9 T, the CFs showed perfect alignment and the composite showed a high thermal conductivity of 11.76 W/(m·K) with only 20 vol% CF loading, owing to the ordered structure. Meanwhile, due to the low filler loading and discontinuous structure, a low hardness of 60~70 (shore 00) was also realized. Their thermal management performance was further confirmed in a test system, revealing promising applications for magnetic aligned CF–rubber composites in thermal interface materials.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3