Experimental and Numerical Investigations of the Seismic Performance of Railway Gravity Piers with Low Reinforcement Ratios

Author:

Lu Xingji1,Lu Jinhua2ORCID

Affiliation:

1. Department of Bridge Engineering, Tongji University, Shanghai 200092, China

2. School of Civil Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

Gravity pier is a widely employed pier type in railway bridges worldwide. It is characterized by a solid cross-section with a low longitudinal reinforcement ratio which can be even lower than 0.5%. These low-reinforced gravity piers have been found to be vulnerable under major earthquakes, but their seismic performance has not been fully understood. Improving the seismic safety of these piers and reducing the consumption of reinforcing steels coincide with multiple Sustainable Development Goals (SDG 6, 7, and 9). In this concern, three main objectives are achieved in the present research. Firstly, quasi-static tests were conducted on two gravity piers with low longitudinal reinforcement ratios: 0.3% and 0.4%. The tests found the reinforcement ratio significantly affected the failure mode and seismic capacity. A typical brittle failure was observed in the specimen with the 0.3% reinforcement ratio. Fracture of longitudinal reinforcing steels was heard, and only a few cracks formed within a narrow region at the pier bottom, whereas the structural behavior of the specimen with a 0.4% reinforcement ratio was ductile, and cracks were located within a wider region (800 mm) at the pier bottom. Increasing the reinforcement ratio significantly increased the energy dissipation capacity and the displacement ductility. Secondly, finite element models of two specimens built using ANSYS were validated with test results, and then a series of finite element models were built to further investigate the influences of three important parameters on the seismic capacity. The three parameters are shear span to depth ratio, axial compression ratio, and longitudinal reinforcement ratio. The validations found that the load–displacement hysteretic curves and the distributions of concrete plastic strain from finite element analyses matched well with those from tests. Further finite element analyses found that the shear span to depth ratio was inversely correlated with the peak lateral load, but positively correlated with the displacement ductility. Conversely, increasing the axial compression ratio increased the peak lateral load but decreased the displacement ductility. Thirdly, an analytical equation was proposed to predict the displacement ductility of low-reinforced gravity piers, and the predicted ductilities agreed well with those obtained from finite element analyses. The findings provide a better understanding of the seismic performance of low-reinforced gravity piers, which helps extend the application of these piers. Furthermore, the proposed analytical equation assists in the evaluation and design of these piers.

Funder

National Natural Science Foundation of China

Lanzhou Jiaotong University Youth Science Research Foundation

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3