Coupling LSTM and CNN Neural Networks for Accurate Carbon Emission Prediction in 30 Chinese Provinces

Author:

Han Zhonghua1,Cui Bingwei1,Xu Liwen1,Wang Jianwen1,Guo Zhengquan2

Affiliation:

1. College of Science, North China University of Technology, Beijing 100144, China

2. School of Economics and Management, North China University of Technology, Beijing 100144, China

Abstract

Global warming is a major environmental issue facing humanity, and the resulting climate change has severely affected the environment and daily lives of people. China attaches great importance to and actively responds to climate change issues. In order to achieve the “dual carbon” goal, it is necessary to clearly define the emission reduction path and scientifically predict future carbon emissions, which is the basis for setting emission reduction targets. To ensure the accuracy of data, this study applies the emission coefficient method to calculate the carbon emissions from the energy consumption in 30 provinces, regions, and cities in China from 1997 to 2021. Considering the spatial correlation between different regions in China, we propose a new machine learning prediction model that incorporates spatial weighting, namely, an LSTM-CNN combination model with spatial weighting. The spatial weighting explains the spatial correlation and the combined model is used to analyze the carbon emissions in the 30 provinces, regions, and cities of China from 2022 to 2035 under different scenarios. The results show that the LSTM-CNN combination model with four convolutional layers performs the best. Compared with other models, this model has the best predictive performance, with an MAE of 8.0169, an RMSE of 11.1505, and an R2 of 0.9661 on the test set. Based on different scenario predictions, it is found that most cities can achieve carbon peaking before 2030. Some cities need to adjust their development rates based on their specific circumstances in order to achieve carbon peaking as early as possible. This study provides a research direction for deep learning time series forecasting and proposes a new predictive method for carbon emission forecasting.

Funder

National Social Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3