Assessment of Advanced Machine and Deep Learning Approaches for Predicting CO2 Emissions from Agricultural Lands: Insights Across Diverse Agroclimatic Zones

Author:

Harsányi Endre,Mirzaei Morad,Arshad SanaORCID,Alsilibe Firas,Vad Atilla,Nagy Adrian,Ratonyi Tamás,Gorji Manouchehr,Al-Dalahme Main,Mohammed SafwanORCID

Abstract

AbstractPrediction of carbon dioxide (CO2) emissions from agricultural soil is vital for efficient and strategic mitigating practices and achieving climate smart agriculture. This study aimed to evaluate the ability of two machine learning algorithms [gradient boosting regression (GBR), support vector regression (SVR)], and two deep learning algorithms [feedforward neural network (FNN) and convolutional neural network (CNN)] in predicting CO2 emissions from Maize fields in two agroclimatic regions i.e., continental (Debrecen-Hungary), and semi-arid (Karaj-Iran). This research developed three scenarios for predicting CO2. Each scenario is developed by a combination between input variables [i.e., soil temperature (Δ), soil moisture (θ), date of measurement (SD), soil management (SM)] [i.e., SC1: (SM + Δ + θ), SC2: (SM + Δ), SC3: (SM + θ)]. Results showed that the average CO2 emission from Debrecen was 138.78 ± 72.04 ppm (n = 36), while the average from Karaj was 478.98 ± 174.22 ppm (n = 36). Performance evaluation results of train set revealed that high prediction accuracy is achieved by GBR in SC1 with the highest R2 = 0.8778, and lowest root mean squared error (RMSE) = 72.05, followed by GBR in SC3. Overall, the performance MDLM is ranked as GBR > FNN > CNN > SVR. In testing phase, the highest prediction accuracy was achieved by FNN in SC1 with R2 = 0.918, and RMSE = 67.75, followed by FNN in SC3, and GBR in SC1 (R2 = 0.887, RMSE = 79.881). The performance of MDLM ranked as FNN > GRB > CNN > SVR. The findings of the research provide insights into agricultural management strategies, enabling stakeholders to work towards a more sustainable and climate-resilient future in agriculture.

Funder

University of Debrecen

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3