Research on Multi-Alternatives Problem of Finite Element Model Updating Based on IAFSA and Kriging Model

Author:

Kang Juntao,Zhang Xueqiang,Cao Hongyou,Qin Shiqiang

Abstract

Due to insufficient test data, insufficient constraint equations and uncertain objective function, the local optimal solution and the global optimal solution of the objective function in finite element model updating may represent the actual parameters of the structure. Based on this, this paper proposes an improved artificial fish school algorithm. By combining the niche technology with the artificial fish school algorithm, the improved algorithm can systematically find multiple global optimal solutions and local optimal solutions of the objective function. Aiming at the difficulty of determining the niche radius, an adaptive niche radius mechanism is proposed. The improved algorithm is used to study the multi-alternatives problem of finite element model updating after verifying its feasibility through numerical simulation analysis. In the case of benchmark framework model updating, it is confirmed that multi-alternative problems exist and the global optimal solution of the objective function does not necessarily represent the true parameters of the structure. In case 2, the improved algorithm combined with the Kriging model is applied to the model updating of a cable-stayed footbridge, and 15 sets of solutions are obtained, in which the error objective function values of the measured and theoretical values of the bridge modes are close but the solutions are completely different. Combining with the actual bridge condition and reanalysis technology, the author takes the suboptimal solution 2 as the most representative solution of the bridge parameters, which reduces the possibility of misjudgment of structural parameters.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3