Transfer Learning Based Method for Frequency Response Model Updating with Insufficient Data

Author:

Deng Zhongmin,Zhang Xinjie,Zhao Yanlin

Abstract

Finite element model updating precision depends heavily on sufficient vibration feature extraction. However, adequate amount of sample collection is generally time-consuming in frequency response (FR) model updating. Accurate vibration feature extraction with insufficient data has become a significant challenge in FR model updating. To update the finite element model with a small dataset, a novel approach based on transfer learning is firstly proposed in this paper. A readily available fault diagnosis dataset is selected as ancillary knowledge to train a high-precision mapping from FR data to updating parameters. The proposed transfer learning network is constructed with two branches: source and target domain feature extractor. Considering about the cross-domain feature discrepancy, a domain adaptation method is designed by embedding the extracted features into a shared feature space to train a reliable model updating framework. The proposed method is verified by a simulated satellite example. The comparison results manifest that sample amount dependency has prominently lessened this method and the updated model outperforms the method without transfer learning in accuracy with the small dataset. Furthermore, the updated model is validated through dynamic response out of the training set.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3