Degradation of Mechanical Properties of A-PET Films after UV Aging

Author:

Vasylius Marius1,Tadžijevas Artūras1,Šapalas Deivydas1,Kartašovas Valentinas1ORCID,Janutėnienė Jolanta2ORCID,Mažeika Pranas2

Affiliation:

1. Marine Research Institute, Universiteto Av. 17, 92294 Klaipeda, Lithuania

2. Department of Engineering, Klaipeda University, Bijūnų st. 17, 91225 Klaipeda, Lithuania

Abstract

In 2018, the European Commission adopted the European Strategy for Plastics in a Circular Economy, which outlines key actions to reduce the negative impact of plastic pollution. The strategy aims to expand plastic recycling capacity and increase the proportion of recycled materials in plastic products and packaging. Using recycled plastic can save 50–60% energy compared to virgin plastic. Recycled PET can be used in the production of A-PET films, which are predominantly used in thermo-vacuum forming for food packaging. Storage conditions can influence the mechanical properties of polymer materials. This work presents changes in the mechanical properties of A-PET films after UV irradiation. An experimental investigation of the UV aging of A-PET films was conducted in a UV aging chamber. The specimens were exposed to a UV radiation dose rate of 2.45 W/m2 for 1, 2, 4, 8, 16, 24, 32, and 40 h. UV measurements were also taken on a sunny day to compare the acceleration of UV irradiation in the UV aging chamber. Mechanical tensile tests were performed on two different three-layer A-PET films (100% virgin and 50% recycled). The tensile strength and relative elongation of the A-PET films were determined, and the work required to break the film was calculated. The total consumed work was divided into the work needed for elastic and plastic deformations. A study of the UV aging of A-PET films confirmed a significant effect on the films, including a loss of plasticity even after brief exposure to solar irradiance. The results of the puncture impact test further confirmed the deterioration of the mechanical properties of A-PET material due to exposure to UV radiation, with a greater effect observed for the recycled material.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3