Microbial degradation of polyethylene terephthalate: a systematic review

Author:

Benavides Fernández Cesar David,Guzmán Castillo Michelly Paola,Quijano Pérez Silvia Andrea,Carvajal Rodríguez Lida VivianORCID

Abstract

AbstractPlastic pollution levels have increased rapidly in recent years, due to the accumulation of plastic waste, including polyethylene terephthalate (PET). Both high production and the lack of efficient methods for disposal and recycling affect diverse aquatic and terrestrial ecosystems owing to the high accumulation rates of plastics. Traditional chemical and physical degradation techniques have caused adverse effects on the environment; hence, the use of microorganisms for plastic degradation has gained importance recently. This systematic review was conducted for evaluating the reported findings about PET degradation by wild and genetically modified microorganisms to make them available for future work and to contribute to the eventual implementation of an alternative, an effective, and environmentally friendly method for the management of plastic waste such as PET. Both wild and genetically modified microorganisms with the metabolic potential to degrade this polymer were identified, in addition to the enzymes and genes used for genetic modification. The most prevalent wild-type PET-degrading microorganisms were bacteria (56.3%, 36 genera), followed by fungi (32.4%, 30 genera), microalgae (1.4%; 1 genus, namely Spirulina sp.), and invertebrate associated microbiota (2.8%). Among fungi and bacteria, the most prevalent genera were Aspergillus sp. and Bacillus sp., respectively. About genetically modified microorganisms, 50 strains of Escherichia coli, most of them expressing PETase enzyme, have been used. We emphasize the pressing need for implementing biological techniques for PET waste management on a commercial scale, using consortia of microorganisms. We present this work in five sections: an Introduction that highlights the importance of PET biodegradation as an effective and sustainable alternative, a section on Materials and methods that summarizes how the search for articles and manuscripts in different databases was done, and another Results section where we present the works found on the subject, a final part of Discussion and analysis of the literature found and finally we present a Conclusion and prospects.

Funder

Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,General Physics and Astronomy,General Engineering,General Environmental Science,General Materials Science,General Chemical Engineering

Reference111 articles.

1. Sangeetha Devi R, Rajesh Kannan V, Natarajan K, Nivas D, Kannan K, Chandru S, Robert Antony A (2015) The role of microbes in plastic degradation. In: Chandra R (ed) Environmental waste management, 1ra edn. CRC Press, Boca Raton, pp 341–370

2. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, Toyohara K, Miyamoto K, Kimura Y, Oda K (2016) A bacterium that degrades and assimilates poly(ethylene terephthalate). J Res Rep 351:1196–1199

3. ONU United Nations (2019) 10 UN cifras to show the damage plastics are doing to the planet. https://expansion.mx/vida-arte/2019/07/03/10-cifras-de-la-onu-para-mostrar-el-dano-que-los-plasticos-le-hacen-al-planeta. Accessed 9 June 2020 (In Spanish)

4. Geyer R, Jambeck JR, Law KL (2017) Production, use, and fate of all plastics ever made. Sci Adv 3:25–29. https://doi.org/10.1126/sciadv.1700782

5. Vázquez-Alcántara L, Oliart-Ros RM, García-Bórquez A, Peña-Montes C (2021) Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol Spectr 9(3):e00976-e1021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3