Enhancing the Properties of Polyvinyl Alcohol Films by Blending with Corn Stover-Derived Cellulose Nanocrystals and Beeswax

Author:

Park Namhyeon12ORCID,Friest Mason A.3,Liu Lingling1ORCID

Affiliation:

1. Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA 50010, USA

2. Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, USA

3. Department of Mechanical Engineering, Iowa State University, Ames, IA 50010, USA

Abstract

Coating is a technique to surround a target substance with a thin layer to obtain desirable properties. Polyvinyl alcohols (PVAs) are biodegradable plastics and have shown good applicability as a coating or film material. Cellulose nanocrystals are a promising green nanomaterial that has been shown to enhance the properties of PVA after blending. However, these PVA/CNC films have concerns in a moist environment due to high hydrophilicity. To overcome this issue, the current study incorporated beeswax into PVA/CNC films and investigated the effect of CNC and beeswax on the properties of the coatings and films. Results showed that the addition of corn stover-derived CNCs to PVA films increased tensile strength (from 11 to 25 MPa) and Young’s modulus (from 32 to 173 MPa) and reduced water vapor transmission rate (from 25 to 20 g h−1 m−2). Beeswax added to PVA/CNC films further improved water vapor barrier properties (from 20 to 9 g h−1 m−2) and maintained Young’s modulus (from 173 to 160 MPa), though it caused a reduction in the tensile strength (from 25 to 11 MPa) of the films. This information can help to select materials for blending with PVAs by obtaining the desirable endmost properties depending on applications.

Funder

State of Iowa Biosciences Initiative

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3