Investigating Cellulose Nanocrystal and Polyvinyl Alcohol Composite Film in Moisture Sensing Application

Author:

Ghosh Ananya12,Parit Mahesh12,Jiang Zhihua12ORCID

Affiliation:

1. Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL 36849, USA

2. Alabama Centre for Paper and Bioresource Engineering, 356 Ross Hall, Auburn, AL 36849, USA

Abstract

This study focused on utilizing cellulose nanocrystal (CNC)–polyvinyl alcohol (PVA) composite in optical sensor applications to detect high humidity conditions and determine water concentration in ethanol. We focused on the composite’s effectiveness in moisture absorption to demonstrate visual color change. We demonstrated that the different molecular weights of PVA significantly affect CNC’s chiral nematic structure and moisture absorption capability. PVA with molecular weight 88 k–97 k exhibited the disintegration of its chiral nematic structure at 30 wt%, whereas low molecular weight PVA (n~1750) showed no structural disintegration even at 100 wt% concentration when analyzed through UV-Vis spectroscopy. Further, the thermal crosslinking of the CNC-PVA composite showed no significant loss of moisture sensitivity for all molecular weights of the PVA. We observed that the addition of PVA to the sulfated CNC obtained from sulfuric acid hydrolysis did not facilitate moisture absorption significantly. A CNC-PVA sensor was developed which can detect high humidity with 2 h. of exposure time. 2,2,6,6-tetramethylpiperidin-1-piperidinyloxy oxidized CNC (TEMPO-CNC) having carboxylic functionality was also used to prepare the CNC-PVA composite films for comparing the effect of functional groups on moisture sensitivity. Finally, we demonstrated a facile method for utilizing the composite as an optical sensor to detect water concentration in ethanol efficiently; thus, it can be used in polar organic solvent dehydration applications.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3