New Approach for Processing Recycled Carbon Staple Fiber Yarns into Unidirectionally Reinforced Recycled Carbon Staple Fiber Tape

Author:

Detzel Martin1ORCID,Mitschang Peter1,Breuer Ulf1

Affiliation:

1. Leibniz-Institut fuer Verbundwerkstoffe GmbH, Erwin-Schroedinger-Strasse 58, 67663 Kaiserslautern, Germany

Abstract

This study describes a novel process in which staple fiber yarns made from recycled carbon fibers (rCFs) and polyamide 6 (PA6) fibers are further processed into semi-finished tape products in a modified impregnation and calendaring process. In this process, the staple fiber yarns are heated above the melting temperature of the polymer, impregnated, and stretched to staple fiber tapes (SF tapes) in the calendaring unit. SF tapes with different degrees of stretching and/or repasses were produced. The individual width and thickness were measured in line by a laser profile sensor. From these tapes, preforms were manually laid and processed into laminates in an autoclave. The important physical properties of the unidirectionally reinforced laminates made of the tapes were compared with organic sheets wound from staple fiber yarns. With increasing stretching, both the fiber orientation and mechanical properties improved compared to the organic sheets made from unstretched staple fiber yarns. An improvement in fiber orientation relative to the process direction from 66.3% to 91.9% (between ±10°) and 39.1% to 71.6% (between ±5°), respectively, was achieved for a two-stage stretched tape. The tensile and flexural moduli were increased by 15.2% and 14.5%, respectively.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3