Abstract
Carbon fiber composites are increasingly used in aerospace, motorcycles, sporting, and high-performance vehicles, and their end of life recycling is of growing interest. This study deals with the life cycle assessment (LCA) of carbon fiber reinforced plastics (CFRP) waste streams. The embodied energy (EE) of recycling CFRP via two viable methods—i.e., pyrolysis and solvolysis—is studied. Both pyrolysis and solvolysis were studied for EE with different variants. Alongside fiber recovery from CFRP, the pyrolysis process calculations consider energy recovery from syngas and oil produced within the system. For pyrolysis, electric furnace and natural gas were primarily considered. For solvolysis, different solvent scenarios were considered, including (a) deionized water, (b) water and potassium hydroxide, (c) acetone and water, and (d) water with acetic acid and potassium hydroxide. Energy reduction from one generation to the next has also been highlighted. The EE for recycling CFRP is quantified and discussed for these scenarios in this paper.
Funder
U.S. Department of Energy
National Institute of Environmental Health Sciences
Subject
Management, Monitoring, Policy and Law,Waste Management and Disposal,General Materials Science
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献