Can Remotely Sensed Snow Disappearance Explain Seasonal Water Supply?

Author:

Bishay Kaitlyn1ORCID,Bjarke Nels R.1,Modi Parthkumar1ORCID,Pflug Justin M.234ORCID,Livneh Ben14ORCID

Affiliation:

1. Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO 80309, USA

2. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20742, USA

3. NASA Goddard Space Flight Center Hydrological Sciences Laboratory, Greenbelt, MD 20771, USA

4. Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80309, USA

Abstract

Understanding the relationship between remotely sensed snow disappearance and seasonal water supply may become vital in coming years to supplement limited ground based, in situ measurements of snow in a changing climate. For the period 2001–2019, we investigated the relationship between satellite derived Day of Snow Disappearance (DSD)—the date at which snow has completely disappeared—and the seasonal water supply, i.e., the April—July total streamflow volume, for 15 snow dominated basins across the western U.S. A Monte Carlo framework was applied, using linear regression models to evaluate the predictive skill—defined here as a model’s ability to accurately predict seasonal flow volumes—of varied predictors, including DSD and in situ snow water equivalent (SWE), across a range of spring forecast dates. In all basins there is a statistically significant relationship between mean DSD and seasonal water supply (p ≤ 0.05), with mean DSD explaining roughly half of the variance. Satellite-based model skill improves later in the forecast season, surpassing the skill of in-situ-based (SWE) models in skill in 10 of the 15 basins by the latest forecast date. We found little to no correlation between model error and basin characteristics such as elevation and the ratio of snow water equivalent to total precipitation. Despite a relatively short data record, this exploratory analysis shows promise for improving seasonal water supply prediction, in particular for snow dominated basins lacking in situ observations.

Funder

National Aeronautics and Space Administration

USGS

NOAA

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3